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Subsecond fluctuations in extracellular dopamine
encode reward and punishment prediction errors
in humans
L. Paul Sands1,2†‡, Angela Jiang2‡, Brittany Liebenow1,2‡, Emily DiMarco1,2, Adrian W. Laxton3,
Stephen B. Tatter3, P. Read Montague4,5,6, Kenneth T. Kishida1,2,3*

In themammalian brain, midbrain dopamine neuron activity is hypothesized to encode reward prediction errors
that promote learning and guide behavior by causing rapid changes in dopamine levels in target brain regions.
This hypothesis (and alternatives regarding dopamine’s role in punishment-learning) has limited direct evi-
dence in humans. We report intracranial, subsecond measurements of dopamine release in human striatum
measured, while volunteers (i.e., patients undergoing deep brain stimulation surgery) performed a probabilistic
reward and punishment learning choice task designed to test whether dopamine release encodes only reward
prediction errors or whether dopamine release may also encode adaptive punishment learning signals. Results
demonstrate that extracellular dopamine levels can encode both reward and punishment prediction errors
within distinct time intervals via independent valence-specific pathways in the human brain.
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INTRODUCTION
Dopamine neurons are critical for mammalian brain function and
behavior (1), with changes in dopaminergic efficacy believed to un-
derlie a wide range of human brain disorders including substance
use disorders, depression, and Parkinson’s disease (2–5). Midbrain
dopamine neurons project to the basal ganglia, cortical brain
regions associated with cognitive, limbic, and motor functions,
and form recurrent connections with ventral and dorsal striatum
(6). In this way, dopamine signaling is thought to influence different
distributed brain networks that control processes supporting stim-
ulus-driven and goal-directed decision-making, such as reward
learning, motor planning and execution, motivation, and emotion
(1, 6). A leading hypothesis that connects these disparate computa-
tional roles for dopamine proposes that dopamine neurons encode
information about errors in an organism’s expectations about re-
warding outcomes, so-called reward prediction errors [RPE; (7,
8)]. Specifically, in nonhuman animal research, it has been shown
that phasic changes in dopamine neuron spiking activity encode
“temporal difference” RPEs [TD-RPEs; (7–14)], an optimal learning
signal derived within computational reinforcement learning theory
(15) and that has recently been central to major advances in the de-
velopment of deep learning artificial neural networks capable of au-
tonomously achieving human expert-level performance on a variety
of tasks (16–19).

Decades of nonhuman animal research support the idea that
dopamine neurons signal RPEs in the mammalian brain [(7–14);
see (11) for review]; however, in humans, direct evidence is

limited. There is clear evidence in humans that changes in the
firing rate of putative dopamine neurons encode RPEs (20), and
regions rich in afferent dopaminergic input show changes in
blood oxygen–level–dependent signals consistent with physiologi-
cal processing of RPEs (21–23). Still, using indirect measures of
dopamine release like spiking rates at the cell body or hemodynamic
signals does not provide direct evidence that dopamine release in
target regions effectively signals RPEs. In rodents, subsecond
changes in extracellular dopamine levels in the striatum have been
measured using fast-scan cyclic voltammetry (FSCV) and rapid-
acting, genetically encoded, fluorescent dopamine sensors [e.g.,
dLight and GRAB; (24, 25)]. These studies reveal that dopamine
levels not only reflect RPEs (12–14) but also respond to diverse af-
fective stimuli [e.g., drug-predictive cues; (26, 27)] and vary with
specific recording location (28) and task demands [e.g., effort
costs; (29)]. Consistent with this, rodent and nonhuman primate
studies have shown that changes in dopamine neuron firing rate
may also encode aversive prediction errors (13, 30–35). Relatedly,
human functional magnetic resonance imaging experiments
suggest that RPE and punishment prediction error (PPE) signals
are represented in dopamine-rich regions during learning about ap-
petitive and aversive outcomes (36–39).

Recently, studies leveraging the ability to directly measure dop-
amine release in the human brain with high temporal resolution
have revealed that subsecond changes in dopamine levels reflect
both actual and counterfactual error signals during risky deci-
sion-making (40, 41), the average value of reward following a se-
quence of decisions (42), and nonreinforced, although goal-
directed, perceptual decision-making (43). In experiments where
RPEs could be estimated (40, 41), dopamine levels seemed to entan-
gle actual and counterfactual information (i.e., outcomes that
“could have been” had a different choice been made) for both
gains and losses, resulting in a superposed value prediction error
signal (40). These results suggest the hypothesis that reward and
punishment information, encoded by extracellular dopamine
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fluctuations, could be derived from independent streams but com-
bined or differentiated by downstream neurons in the striatum (44).

We sought to determine whether dopamine release in human
striatum specifically encodes TD-RPEs in humans as initially sug-
gested by work in nonhuman primates (7, 8). We also sought to test
an alternative hypothesis that dopamine release in these same loci
also encodes PPEs, the possibility of which remains debated (13, 30–
35). To test these hypotheses, we used human voltametric methods
(Fig. 1A) (40–43), while participants performed a decision-making
task (Fig. 1B) that allowed us to disentangle the impact of rewarding
and punishing feedback on dopamine release and choice behavior.
This approach allowed us to monitor rapid phasic changes in

dopamine levels (Fig. 1C), while participants learned from reward-
ing as well as punishing feedback. The specific task design allowed
us to test two different reinforcement learning models that express
the mutually exclusive hypotheses that dopamine release encodes
RPEs and PPEs via (i) a unidimensional valence system versus (ii)
a valence-partitioned system (45, 46), whereby appetitive and aver-
sive stimuli are processed by independent systems, thereby allowing
learning of co-occurring although statistically independent appeti-
tive and aversive stimuli (fig. S1).

Fig. 1. Probabilistic reward and punishment task and associated trial-by-trial dopamine time series recorded via human voltammetry. (A) Blurred (to protect
privacy) photograph depicting the operating room during a human voltammetry experiment during DBS neurosurgery; inset: MRI showing general location of the re-
search-use carbon-fiber (CF) microelectrode within the caudate. (B) Schematic of a trial from the choice task. (C) Trial-by-trial time series of caudate dopamine levels
recorded from a single participant, with time series colored according to task phase; vertical dashed line indicates when the choice options were presented on each trial,
and colored markers indicate trial events of interest (red, choice onset; black, outcome onset; blue, rating query onset; magenta, rating submitted).
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RESULTS
Human voltammetry experimental design
Participants (n = 3) were adult patients diagnosed with essential
tremor (ET) who consented to undergo deep brain stimulation
(DBS) electrode implantation neurosurgery (Fig. 1A). Before the
day of surgery, all participants provided written informed consent
to participate in the research procedure after deciding to undergo
the clinical procedure. The neuroanatomical target of DBS lead im-
plantation surgery for patients with ET is the ventralis intermediate
nucleus (VIM) of the thalamus; this surgery permits carbon-fiber
microelectrode recording within the caudate nucleus, a major site
for dopaminergic innervation and dopamine release (Fig. 1A,
inset). Notably, the pathophysiology of ET is thought to not
involve disruptions of the dopaminergic system (47). Before im-
planting the DBS lead, a carbon-fiber microelectrode is used for vol-
tammetric recordings along the trajectory that the DBS lead may be
placed (40–43). In the present work, the carbon-fiber microelec-
trode was placed in the caudate (generally in the medial-posterior
regions; see inset in Fig. 1A), and dopamine measurements were
sampled once every 100 ms, while participants performed the
reward and punishment learning task. Following the research pro-
cedure, the carbon-fiber microelectrode is removed, and the DBS
electrode implantation surgery is completed. No change in the
outcome or associated risks have been associated with performing
this kind of intracranial research (48).

The behavioral task that we used is a probabilistic reward and
punishment (PRP) learning task with reversal learning where

participants’ actions were reinforced or punished with monetary
gains or losses. Participants are instructed and actually paid a
bonus according to the dollar amounts that they earn in the task.
Unbeknownst to the participants, the task is setup in stages (fig.
S2), such that the initial stage (phase 1) is biased toward probabilis-
tic gain trials (binary outcomes, $1 or $0) where participants can
earn an initial reserve of cash before entering phase 2, which intro-
duces trials with probabilistic losses (binary outcomes, −$1 or $0).
In the final stage (phase 3), the probabilities of gain or loss outcomes
associated with the choice cues are held constant, but the magni-
tudes of the outcomes are changed, such that the expected values
change which options should be expected to pay the most or least
(fig. S2). Optimal performance on this task requires participants to
learn from positive and negative feedback to select the option on
each trial that maximizes the expected reward and minimizes the
expected punishment.

Human dopamine levels and TD-RPEs
Behavioral data demonstrated that patients with ET learned the PRP
task’s incentive structure: Overall, they chose the best option on a
given trial more often than chance. Moreover, patients with ET did
not perform significantly differently from a control cohort of
human adults performing the same task in a behavioral laboratory
setting in a manner that would suggest any specific additional dif-
ficulty with the experimental task for patients with ET (fig. S3). To
test whether subsecond dopamine fluctuations in human caudate
reflected TD-RPEs, we extracted time series of dopamine levels

Fig. 2. Phasic dopamine levels in human caudate reflect valence-partitioned RPEs and PPEs. Dopamine responses from 0 to 700 ms following prediction errors
events in the PRP task are categorized by trial type and prediction error sign. (A) Statistically, phasic dopamine transients fail to separate positive and negative TD-RPEs. (B)
Dopaminergic TD-RPE responses sorted by trial type: gain-expected trials (left) and loss-expected trials (right). (C) Phasic dopamine transients across all trials sorted by VP-
RPE sign (top) and VP-PPE sign (bottom). Asterisks denote permutation test, P < 0.05; parentheses around asterisks denote significance after correcting permutation tests
for multiple comparisons following the Benjamini-Hochberg procedure.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Sands et al., Sci. Adv. 9, eadi4927 (2023) 1 December 2023 3 of 13

**NOT FINAL**

EMBARGOED UNTIL 2:00 PM US ET FRIDAY, 01 DECEMBER 2023



on each trial aligned to the moments of option presentation, action
selection, and outcome presentation, each of which were expected
to elicit TD-RPEs during the course of the task. With learning, TD
prediction error signals gradually shift in time from occurring in
response to previously unexpected outcomes to instead occurring
in response to the presentation of outcome-predictive stimuli (7,
8, 14, 15). This is a hallmark characteristic of TD learning processes
(14) that explains higher-order conditioning behaviors and tempo-
ral patterns of dopamine neuron activity that other theoretical
models that do not consider time within a trial [e.g., Rescorla-
Wagner rule; (49)] do not account for (6, 7, 14). Thus, we hypoth-
esized that dopamine fluctuations would signal TD-RPEs in re-
sponse to events within single trials related to the moment of
option presentation, action selection, and outcome presentation.

We fit a temporal difference reinforcement learning (TDRL)
model to participant behavior and compared the average dopamine
timeseries estimates for positive TD-RPEs (n = 640) and negative
TD-RPEs (n = 524) (Fig. 2, A and B, figs. S4 and S5). Prior
studies in humans, rodents, and nonhuman primates demonstrate
that changes in midbrain dopamine neuron firing rate in response
to rewards and punishments and their predictive cues occur within
100 to 700 ms after event and have nonlinear, multiphasic temporal
patterns that differ between rewards and punishments (7, 8, 10, 20,
30–35). Moreover, phasic changes in extracellular dopamine levels
in human striatum that reflect gain and loss prediction error signals
during risky decision-making have been observed within 200 to 600
ms after event (40, 41). Accordingly, we hypothesized that dopa-
mine-based RPE and PPE signals ought to occur within a similar
time window and focused our analyses on dopamine responses
from 0 to 700 ms following option presentation, action selection,
and outcome presentation.

We found that, across all events from all trials, subsecond dop-
amine fluctuations in human caudate did not significantly distin-
guish positive versus negative TD-RPEs [two-way analysis of
variance (ANOVA) (RPE sign, 0 to 700 ms): FRPE-sign(1,7) = 1.11,
P = 0.29; Fig. 2A]. However, the dopamine TD-RPE response was
not linear over time; splitting the analysis window into early (0 to
300 ms) and late (400 to 700 ms) phasic components of the event-
related dopamine responses (34) showed that dopamine fluctua-
tions across all trials did distinguish TD-RPEs at the early compo-
nent but not the late components [early component two-way
ANOVA (RPE sign, 0 to 300 ms: FRPE-sign(1,3) = 6.11, P = 0.013;
late component two-way ANOVA (RPE sign, 400 to 700 ms):
FRPE-sign(1,3) = 0.18, P = 0.67]. Post hoc two-sample t tests and non-
parametric permutation tests run for each individual time sample 0
to 700 ms after RPE indicated a significant difference between pos-
itive and negative TD-RPEs across all trials at 200 ms {right-tailed
two-sample t test [(RPE > 0) > (RPE < 0)]: t200ms(1162) = 1.90, P =
0.029; permutation test: P = 0.026; fig. S4}. We next further separat-
ed dopamine responses into reward and punishment trial–specific
prediction errors (Fig. 2B), which revealed that dopamine release
weakly distinguished TD-RPEs on reward trials within the first
300 ms after event {early component two-way ANOVA: FRPE-sign-
(1,3) = 3.46, P = 0.063; permutation test: P300ms = 0.036; right-
tailed two-sample t tests [(RPE > 0) > (RPE < 0)]: t300ms(688) =
1.74, P = 0.041; Fig. 2B} but did not distinguish TD-RPEs on pun-
ishment trials [early component two-way ANOVA: FRPE-sign(1,3) =
0.04, P = 0.84; late component two-way ANOVA: FRPE-sign(1,3) =
2.51, P = 0.11; Fig. 2B]. Collectively, these results indicate that

phasic fluctuations in dopamine levels in human caudate may
signal TD-RPEs in the first 200 to 300 ms after event, although
this is only the case for reward-related actions and expected
outcomes.

Human dopamine levels and valence-partitioned
prediction errors
Prior work demonstrated that dopaminergic responses could track
PPEs (13, 31–35), but results shown in Fig.2B suggest that dopa-
mine fluctuations do not reflect temporal difference reward learning
when the outcome stimulus is punishing or expected to be punish-
ing (e.g., monetary losses). Thus, we hypothesized that dopamine
may encode PPEs but as an independent, punishment-specific val-
uation system (44–46). We tested this hypothesis by fitting to par-
ticipant behavior a “covalent learning” model based on a valence-
partitioned reinforcement learning (VPRL) framework that ex-
presses the independence of reward and punishment learning ex-
plicitly (fig. S1) (44–46). This is accomplished by hypothesizing
that two separate neural systems implement TD learning that indi-
vidually process either rewarding (positive valence system) or pun-
ishing (negative valence system) information. We note that the
reward system (i.e., “positive valence” system) in this VPRL frame-
work serves the same role as dopamine-based TD-RPE signaling,
except that the positive system treats negative outcomes as though
nothing happened (i.e., actual losses are treated by the positive
system as an outcome equal to zero); the crux of the covalent learn-
ing model is the hypothesized existence of a separate, parallel neural
system dedicated to learning the statistical structure of negatively
valent information using a TD learning algorithm, which would
allow optimal learning of statistically independent rewarding and
punishing events. Whereas dynamics within each valence system in-
dependently govern either reward or punishment learning, signals
from both systems can be integrated by downstream systems [e.g.,
brain regions to furnish more complex computations underlying af-
fective behaviors (fig. S1), such as signaling the net affective valence
of a stimulus or action (i.e., contrast: positive system signals minus
negative system signals) or its degree of behavioral excitation (i.e.,
arousal via integration: positive system signals plus negative
system signals)].

Fitting subjects’ behavior to a VPRL model resulted in a better fit
to participant behavior compared to TDRL (table S1). We found
that these results replicated in an independent cohort of healthy
human adults (N = 42) who completed the PRP task on a computer
in a behavioral laboratory setting (table S1 and figs. S3, S6, and S7)
(45). Further comparisons revealed that VPRL algorithms may
perform reward and punishment learning more efficiently (e.g.,
learns about punishment structure faster) than traditional TDRL
models that do not partition appetitive and aversive stimuli (figs.
S6 and S7). We next tested the hypothesis that dopamine release
encoded valence-partitioned RPEs (VP-RPEs) and valence-parti-
tioned PPEs (VP-PPEs) by sorting dopamine release time series
data by the VPRL model–specified prediction errors: positive VP-
RPEs (n = 438), negative VP-RPEs (n = 252), positive VP-PPEs (n =
229), or negative VP-PPEs (n = 245) (Fig. 2C and figs. S4 and S5).
We found that dopamine transients distinguished VP-RPEs on
reward trials within the same time window as found for TD-RPEs
{early component two-way ANOVA: FRPE-sign(1,3) = 4.51, P = 0.034;
permutation test: P200ms = 0.047, P300ms = 0.046; right-tailed two-
sample t test [(RPE > 0) > (RPE < 0)]: t200ms(688) = 1.65, P =
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0.049; t300ms(688) = 1.63, P = 0.051; Fig. 2C}. However, notably, we
also observed that phasic dopamine responses effectively distin-
guished VP-PPE signals within a temporal window distinct from
VP-RPE responses, lasting from 400 to 500 ms following a predic-
tion error {late component two-way ANOVA: FRPE-sign(1,3) = 10.7,
P = 0.001; permutation test: P400ms = 0.014, P500ms = 9.8 × 10−3; left-
tailed independent sample t test [(PPE > 0) < (PPE < 0)]: t400ms(472)
= −2.3, P = 0.010; t500ms(472) = −1.80, P = 0.036; Fig. 2C}. These
results demonstrate that subsecond dopamine fluctuations in
human caudate may encode VP-RPEs and VP-PPEs.

Last, we tested a theoretical prediction of the VPRL framework
(44–47) that an action or stimulus’s overall affective valence (i.e.,
reinforcement or punishment) and behavioral activation (i.e.,
high/low arousal) could be represented by the difference and sum
of VP-RPE and VP-PPE signals, respectively (fig. S1). In traditional
TDRL, it is often assumed that affective valence and behavioral ac-
tivation are both simply defined by whether a TD-RPE is positive or
negative: Positive TD-RPEs are reinforcing and tend to increase be-
havioral activation, and negative TD-RPEs are punishing and tend
to inhibit behavioral activation; our results demonstrate that this in-
formation is only distinguishable by the TDRL hypothesis on
reward trials (Fig. 2B). In comparison, it has been suggested that
a dual-valence system framework like VPRL could provide greater
resolution for both valence contrast and behavioral activation infor-
mation processing (44–47). Thus, we tested whether integrated
VPRL error signals could encode these signals and found significant
differences between dopamine responses representing positive af-
fective valence (i.e., reinforcement; average across VP-RPEs > 0
and VP-PPEs < 0) and negative affective valence (i.e., punishment;
average across VP-RPEs < 0 and VP-PPEs > 0), specifically between
200 and 500 ms after event (fig. S8, A and C), although there were no
significant differences in dopamine responses representing behav-
ioral activation signals (fig. S8, B and D).

Decoding RPEs and PPEs
Fluctuations in extracellular dopamine levels are expected to
provide a decodable signal to downstream neural structures. To de-
termine whether the signals that we report (Fig. 2C) are robust
enough to be decoded, we trained logistic classifiers to distinguish
dopamine time series resulting from positive and negative predic-
tion errors on reward trials (Fig. 3, A and B) or positive and negative
prediction errors on punishment trials (Fig. 3, C and D). The clas-
sifiers trained to discriminate positive versus negative RPEs (TD-
RPEs or VP-RPEs on rewarded trials) performed comparably for
both TDRL and VPRL models (Fig. 3, A and B). Conversely, clas-
sifiers trained to discriminate positive from negative PPEs (TD-
RPEs or VP-PPEs on punishment trials) only succeeded when the
dopamine time series were parsed according to the VPRL model
and performed at chance level when the dopamine transients
were hypothesized to be encoded by TDRL (Fig. 3, C and D).

DISCUSSION
We demonstrate, in humans, that subsecond dopamine fluctuations
in the caudate nucleus reflect RPE and PPE signals as predicted by a
VPRL framework. Collectively, our results suggest that human de-
cision-making is influenced by independent, parallel processing of
appetitive and aversive experiences and expectations that can affect
modulation of dopamine release in striatal regions on rapid time

scales (hundreds of milliseconds). Our findings provide an
account for previous observations that dopamine fluctuations in
human striatum appear to superpose actual and counterfactual in-
formation related to gains and losses during risky decision-making
(40, 41) and point toward a candidate neurochemical substrate for
observed hemodynamic changes in human striatum related to ap-
petitive and aversive learning processes (21–23, 36–39).

Related ideas have been proposed, for instance, that rewards and
punishments are integrated together during learning (as opposed to
being processed independently), leading to a “zero-sum” prediction
error that is signaled by dopamine neurons only if the prediction
error is positive [i.e., rewarding; (50)] or that positive and negative
RPEs are learned about “asymmetrically” [i.e., different learning
rates; (51, 52)]. Notably, however, these models propose that the
brain learns a single action value representation updated via a
single prediction error signal that integrates over rewards and pun-
ishments. We emphasize that such proposals are distinct from what
is proposed by the VPRL framework, where reward and punishment
learning are performed simultaneously, in parallel, by independent
neural systems that generate two valence-specific TD prediction
error signals for updating separate reward- and punishment-specif-
ic action value representations (45, 46). We note that VPRL is com-
patible with recently proposed distributional reinforcement
learning methods (52), but, to our knowledge, explicit representa-
tions of distinct distributions for punishment learning (valence par-
titioning) have not yet been explored in in these distributional
approaches.

Averaging dopamine time series across all patients revealed that
dopamine transients reflect VP-RPEs and VP-PPEs, distinguishing
between positive and negative VP-RPEs and VP-PPEs within dis-
tinct temporal windows. Instead of averaging dopamine responses
for all events across all patients, if we first average dopamine re-
sponses across all trials within each patient and then average
across participants at the group-level (i.e., mixed-effects analysis),
then we obtain similar results (figs. S5 and S8). However, we note
that the present human voltammetry data may violate assumptions
underlying random- and mixed-effects analyses, in that there
remains a significant gap in knowledge about the sources of vari-
ability in the measured signals in these relatively early experiments.
For example, unlike nonhuman primate and rodent studies, our
human volunteers come to the clinic with significant variation in
life experience and genetic background. Furthermore, the data col-
lected are expected to vary with the microanatomical environment
of the recording electrode (the active surface is roughly a cylinder of
only 110 μm in length by 7 μm in diameter) within the caudate (a
volume of approximately 4000 mm3) of each patient. Different sub-
regions of the primate caudate (e.g., head, body, and tail subdivi-
sions; matrix and patch subcompartments) are topographically
organized to perform distinct functions as components of specific
but interacting whole-brain networks (6). Moreso, local regulation
of dopamine release along axonal projections, independent of
signals generated at dopaminergic soma, is known to cause varia-
tions in subsecond dopamine fluctuations at release sites (53).
How these and other sources of variation influence the signal that
we record is not at present known, but studies like this one and
others (40–43) are providing our first glimpses at what kinds of
signals can be reflected in subsecond dopamine fluctuations in
humans. Accordingly, a fixed-effects analysis (Fig. 2) is more sensi-
tive for describing the structure in observed dopamine responses
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common across all observations reported (i.e., implicitly averaged
over caudate subregions), although less committed to the nature
of signals expected to be observed in future work.

Our observation that early (0 to 300 ms) dopamine responses
signaled RPEs and later (400 to 700 ms) responses signaled PPEs
is generally consistent with the timing of activity within neuroana-
tomical circuitry by which rewarding and aversive stimuli modu-
lates dopamine neuron activity to effect associative learning (7, 8,
10, 20, 30–35, 54–56). For instance, brain regions such as dorsolat-
eral and central gray pontine tegmental nuclei and their circuit in-
teractions with the habenula and hypothalamus could feasibly
communicate valence-specific information to midbrain dopamine
neurons to affect prediction error responses at time scales relevant
to our present findings (57–59). More generally, the apparent tem-
poral coding of valence information by dopamine levels in the
caudate (Fig. 2C and fig. S8) suggests that how basal ganglia and
distributed cortical brain regions differentially regulate goal-direct-
ed decision-making depends on the temporal covariance of dopa-
mine (and other neuromodulators’) fluctuations. Still, further
research is necessary to probe the possible cellular or circuit mech-
anisms giving rise to the observed outcome valence-dependent tem-
poral patterns in dopamine prediction error responses. For
example, combining recordings of dopaminergic action potentials
at the cell body and neurotransmitter release at target brain regions
could test more comprehensively whether distinct subpopulations
of dopamine neurons may be activated to signal valence-specific
prediction errors or whether a separate neural system controls,

more locally, the timing and polarity of dopaminergic activity in re-
sponse to valent behavioral reinforcers.

The approach used to collect the data presented here are con-
strained by the requirement of standard-of-care neurosurgical pro-
cedures that provide access deep into the human brain. Nonetheless,
our data suggest an extension of traditional TDRL-based algorithms
for understanding how humans process affective information and
the role dopamine signals may play in the human brain. Further-
more, these kinds of data are invaluable for investigating and under-
standing how neuromodulators like dopamine affect human
behavior, human decision-making, and human subjective experi-
ence. Studies and results like those presented here may influence
how we understand and think about the role dopamine that plays
in psychiatric and neurological disorders, where, in many instances,
the extant body of knowledge about dopamine in humans is restrict-
ed to measurements that occur on temporal resolution of the order
of several minutes to days. Future work may allow further direct in-
vestigation of how subsecond dopamine signals are altered in
humans with ET and comorbid psychiatric conditions or how
rapid dopaminergic signals may be altered in patients with Parkin-
son’s disease with or without comorbid psychiatric and nonmotor
Parkinson’s disease–related symptoms.

While much work in translational and basic neuroscience is
focused on basic biological mechanisms in model organisms, it
remains unclear whether such nonhuman models are appropriate
systems to investigate fundamentally human phenomena like sub-
jective affect, human-level willful choice, and related psychiatric and
neurological disorders. The present study confirms prior

Fig. 3. VPRL RPEs and PPEs can be decoded fromhuman dopamine transients. Performance of the logistic classifier trained on (A) TDRL-derived (red) or VPRL-derived
(blue) positive and negative RPEs is comparable across models, with (B) the difference in the area under the receiver operating characteristic (auROC) curve values not
being statistically significant; P value derived from permutation test with 10,000 iterations. (C andD) Same as (A) and (B) but for punishment trials; the difference in auROC
values for the PPE logistic classifiers was significantly different for TDRL and VPRL (P = 0.03). PDF, Posterior Density Function: Count.
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discoveries made in nonhuman model organism pertaining to do-
pamine’s role in encoding RPEs (7–14) but also shows that this hy-
pothesis, previously supported by decades of research in model
organisms, is incomplete regarding dopamine’s role in encoding
aversive feedback. We show that dopamine does not just respond
to aversive stimuli but does so in a manner analogous to TD learn-
ing but specific aversive outcomes. We note that it has not escaped
our notice that the PPE aversive learning system has features that
suggest a role in anxiety disorders analogous to models of the
RPE reinforcement learning system role in addiction, depression,
and obsessive-compulsive disorder.

MATERIALS AND METHODS
Patient recruitment and informed consent
A total of 11 patients (6 females and 5 males; age range, 48 to 82;
mean age ± SD, 67.5 ± 10.9) diagnosed with ET and approved can-
didates for DBS treatment participated in this study. Of the 11 pa-
tients, a subset of three patients performed the procedure while
carbon-fiber microelectrodes recorded dopamine release in their
caudate, and one patient performed the procedure while a
carbon-fiber microelectrode recorded dopamine release in their
thalamic VIM. The other seven patients performed the task while
recordings were made with a tungsten microelectrode. While all
11 patients’ behavioral data were included in analyses for hierarchi-
cal parameter estimation, the tungsten microelectrode (n = 7) and
thalamic VIM (n = 1) neurochemical recordings were not included
in the present work. Thus, all 11 patients’ behavioral data were used
for the computational modeling and behavioral analyses (figs. S3,
S6, S7, and S9), whereas only three patients’ neurochemical record-
ings (with carbon-fiber electrodes in caudate) were included in the
dopamine prediction error analyses (Figs. 2 and 3 and figs. S4, S5,
and S8).

After informed written consent was obtained from each patient,
patients were given details about the decision-making task (i.e., PRP
task) and were familiarized with the type of outcomes experienced
during game play and the controllers used for submitting responses.
The experiment was approved by the Institutional Review Board
(no. IRB00017138) of Wake Forest University Health Sciences
(WFUHS). Of the 11 patients that participated in the study, four
patients did not complete all 150 trials of the task (range, 121 to
148 trials).

In addition to the cohort of patients with ET, a behavior-only
cohort of healthy adult humans (N = 42; 19 females) was recruited
from the local Winston-Salem community to complete the PRP
task. Informed written consent was obtained from each participant,
and the experiment was approved by the IRB (no. IRB00042265) of
WFUHS. All behavioral experiments were conducted at WFUHS.

PRP task experimental procedure
The PRP task (Fig. 1B and fig. S2) is a 150-trial, two-choice mone-
tary reward and punishment learning task, where chosen options
are reinforced probabilistically with either monetary gains (or no
gain) or monetary losses (or no loss). Six options (represented by
fractal images) comprise the set of possible actions, with each
option assigned to one of the three outcome probabilities (25, 50,
and 75%) and one of the two outcome valences (monetary gain
or loss); thus, there are three reward-associated “gain/no-gain”
options and three “loss/no-loss” options in the task, and the

assignment of options to outcome probabilities and valences is ran-
domized across participants. On each trial, two of the six options are
presented (note that option pairings are random, not fixed); de-
pending on the phase of the task (phase 1, trials 1 to 25; phase 2,
trials 26 to 75; and phase 3, trials 76 to 150), either two of the
three gain/no-gain options are presented (i.e., gain/no-gain trials),
two of the three loss/no-loss options are presented (i.e., loss/no-loss
trials), or one of each gain/no-gain and loss/no-loss options are pre-
sented (i.e., “mixed” trials). Participants were told that certain
options in the PRP task would earn them money and some
options would lose them money, and participants were instructed
that their goal was to maximize their earnings on the task and
that they would receive their total earnings as a bonus monetary
payment at the end of the study visit.

At the beginning of the experiment (phase 1, trials 1 to 25), each
trial starts with the presentation of two of the three possible gain/
no-gain options, and participants are reinforced with either a mon-
etary gain or nothing ($1 or $0) according to the chosen option’s
fixed probability. In phase 2 (trials 26 to 75), the task introduces
loss/no-loss trials that present two of the three loss/no-loss
options that result in either a monetary loss or nothing (−$1 or
$0) with fixed probabilities. In this phase, there are an equal
number of gain/no-gain and loss/no-loss trials, randomly
ordered. In phase 3 (trials 76 to 150), two options are presented ran-
domly such that any trial may consist of two gain/no-gain options
and two loss/no-loss options or one gain/no-gain and one loss/no-
loss option. Moreover, in phase 3, the outcome magnitudes of all
options change such that the 25, 50, and 75% “gain” options now
payout $2.50, $1.50, and $0.50, respectively, and the 25, 50, and
75% “loss” options now lose −$1.25, −$0.75, and −$0.25, respec-
tively (see dashed lines in fig. S2).

On each trial, participants select an option at their own pace.
Once a selection has been made, the unchosen option disappears
at the same time that the chosen option is highlighted, and this
screen lasts for 3 s. The outcome is then displayed for 1 s followed
by a blank screen that lasts for a random time interval (defined by a
Poison distribution with λ = 3 s) before the next trial begins. In ad-
dition, on each trial with probability of 0.33, the blank screen fol-
lowing the outcome presentation is followed by a subjective feeling
rating screen that consists of the text “How do you feel about the last
outcome?” and a visual-analog rating scale with a vertical bar cursor
that can be moved by the participant. Participants are asked to rate
their feelings about the experienced outcome with this visual-digital
scale, after which the blank screen reappears for another random
time interval before the next trial begins.

Behavioral data analysis
TDRL model
In the standard TDRL model (15, 60), the expected value of a state-
action pair Q(si, ai), where i indexes discrete time points in a trial, is
updated following selection of action ai in state si according to

Qðsi; aiÞ  Qðsi; aiÞ þ αδi ð1Þ

where 0 < α < 1 is a learning rate parameter that determines the
weight prediction errors have on updating expected values and δi
is the TD-RPE term

δi ¼ ½outcomei þ γmax
a

Qðsiþ1; ~aÞ� � Qðsi; aiÞ ð2Þ
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where outcomei is the outcome (positive or negative) experienced in
state si after taking action ai, 0 < γ < 1 is a temporal discount param-
eter that discounts outcomes expected in the future relative to im-
mediate outcomes, and maxa Qðsiþ1; ~aÞ is the maximum expected
action value over all actions ~a afforded in the next state si+1. We
defined the trials of the PRP task as consisting of i = {1,2,3,4}
event time points [1, options presented; 2, action taken; 3,
outcome presented; and 4, (terminal) transition screen]. We
modeled participant choices (choicet) on each trial t of the PRP
task with a softmax choice policy (i.e., categorical logit choice
model) that assigns probability to choosing each of the two
options presented on a trial according to the learned Q values of
the two options. For example, for a trial that presents option 2
and option 5, the corresponding action values at the moment of
option presentation, Q(s1, opt_2) and Q(s1, opt_5), are used to
compute the probability of selecting each option

P½choicet ¼ opt 2 j Qðs1; opt 2Þ;Qðs1; opt 5Þ�

¼
eQðs1;opt 2Þ=τ

eQðs1;opt 2Þ=τ þ eQðs1;opt 5Þ=τ ð3Þ

where 0 < τ < 20 is a choice temperature parameter that determines
the softmax function slope and parameterizes an exploration versus
exploitation trade-off where higher temperature values lead to a
more randomized choice selection policy and lower temperature
values lead to a more winner-take-all, deterministic choice policy.
VPRL model
For VPRL (45, 46), we extend the standard TDRL framework by
specifying that two separate value representations are learned for
each action, corresponding to the rewarding value and punishing
value of each action, and that separate (neural) systems signal
reward- and punishment-specific prediction errors to update the
reward- and punishment-associated action values, respectively. In
this way, VPRL treats “positive” (P) and “negative” (N ) outcomes
as though separate, parallel P- and N-systems effectively establish
a partition between the processing of rewarding and punishing out-
comes. P- and N-system action values are estimated (QP and QN,
respectively) independently, although each system learns these
outcome valence-specific action values using temporal difference
learning (see Eqs. 4 to 7). We model the integration of QP and QN

in the simplest manner (i.e., subtraction; Eq. 8) when value-based
decisions must be made, although alternative approaches for inte-
grating these value estimates may be investigated in future work.

In VPRL, P- and N-systems update action value representations
via TD prediction errors on every episode but by valence-specific
rules (P-system, Eq. 4; and N-system, Eq. 5). The P-system only
tracks rewarding (i.e., appetitive) outcomes (outcomei > 0, Eq. 4)
and the N-system only tracks punishing (i.e., aversive) outcomes
(outcomei < 0, Eq. 5); both systems encode the opposite-valence
outcomes and null outcomes as though no outcome occurred.

Thus, For the P-system, the reward-oriented TD prediction error
is

δPi ¼
outcomei þ γP�maxa QPðsiþ1;~aÞ � QPðsi; aiÞ if outcomei . 0

0þ γP�maxa QPðsiþ1;~aÞ � QPðsi; aiÞ if outcomei � 0

�

ð4Þ

where 0 < γP < 1 is the P-system temporal discounting parameter (as
in TDRL).

The N-system similarly encodes a punishment-oriented TD pre-
diction error term

δNi ¼
j outcomei j þγN�maxa QNðsiþ1;~aÞ � QNðsi; aiÞ if outcomei , 0

0þ γN �maxa QNðsiþ1;~aÞ � QNðsi; aiÞ if outcomei � 0

�

ð5Þ

where 0 < γN < 1 is the N-system temporal discounting parameter
and ∣outcomei∣ indicates the absolute value of the (punishing)
outcome. We use the absolute value of the outcome so that the
N-system positively communicates punishments of varying magni-
tudes, reflecting a neural system that increases its firing rate for
larger-than-expected punishments and decreases its firing rate for
smaller-than-expected punishments.

The P- and N-systems prediction errors update expectations of
future rewards or punishments of an action, respectively, according
to the standard TD learning update rule but for each system inde-
pendently

QPðsi; aiÞ  QPðsi; aiÞ þ αPδPi ð6Þ

QNðsi; aiÞ  QNðsi; aiÞ þ αNδNi ð7Þ

where 0 < αP < 1 and 0 < αN < 1 are learning rates for the P- and N-
systems, respectively; QP(si, ai) is the expected state-action value
learned by the P-system; and QN(si, ai) is the expected state-action
value learned by the N-system.

We compute a composite state-action value for each action by
contrasting the P- and N-system Q values

Qðsi; aiÞ  QPðsi; aiÞ � QNðsi; aiÞ ð8Þ

which is entered into the categorical logistic choice model (e.g.,
softmax policy; Eq. 3) as for the TDRL model above.
Alternative reinforcement learning models
Apart from the TDRL and VPRL models described above, we fit
“asymmetric” versions of these models to participant choice behav-
ior on the PRP task. Asymmetric TDRL and VPRL models are
defined by using distinct learning rate parameters for prediction
errors that are positive or negative. For asymmetric TDRL, this
amounts to changing Eq. 1 to

Qðsi; aiÞ  
Qðsi; aiÞ þ αþδi if δi � 0
Qðsi; aiÞ þ α� δi if δi , 0

�

ð9Þ

where 0 < α+ < 1 is the learning rate for positive TD-RPEs and 0 < α−

< 1 is the learning rate for negative TD-RPEs; the rest of the tradi-
tional TDRL model remains the same. For asymmetric VPRL, Eqs. 6
and 7 are changed to

QPðsi; aiÞ  
QPðsi; aiÞ þ αþPδPi if δPi � 0
QPðsi; aiÞ þ α� PδPi if δPi , 0

�

ð10Þ

QNðsi; aiÞ  
QNðsi; aiÞ þ αþNδNi if δNi � 0
QNðsi; aiÞ þ α� NδNi if δNi , 0

�

ð11Þ

where 0 < α+P and α−P < 1 are learning rate parameters for positive
and negative VP-RPEs, respectively, and 0 < α+N and α−N < 1 are
learning rate parameters for positive and negative VP-PPEs, respec-
tively; the rest of the original VPRL model remains the same.
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Reinforcement learning hierarchical model parameterization
We specified a hierarchical structure to all computational models to
fit participant choice behavior on the PRP task. Individual-level pa-
rameter values are drawn from group-level distributions over each
model parameter. This hierarchical modeling approach accounts
for dependencies between model parameters and biases individu-
al-level parameter estimates toward the group-level mean, thereby
increasing reliability in parameter estimates, improving model iden-
tifiability and avoiding overfitting (61). These hierarchical models
therefore cast individual participant parameter values as deviations
from a group mean.

Formally, the joint posterior distribution P(ϕ, θ∣y, Mi) over
group-level parameters ϕ and individual-level parameters θ for
the ith model Mi conditioned on the data from the cohort of partic-
ipants y takes the form

Pðw j y;MiÞ ¼
pðy j w;MiÞpðw j MiÞ

pðy j MiÞ
ð12Þ

where we simplify the notation to P(w∣y, Mi), with w = {ϕ, θ}) being
a parameter vector consisting of all group- and individual-level
model parameters for model Mi. Here, P(y∣w, Mi) is the likelihood
of choice data y conditioned on the model parameters and hyper-
parameters, P(y∣Mi) is the marginal likelihood (model evidence) of
the data given a model, and P(w∣Mi) is the joint prior distribution
over model parameters as defined by the model Mi, which can be
further factorized into the product of the prior on individual-level
model parameters conditioned on the model hyperparameters, P
(θ∣ϕ, Mi), times the prior over hyperparameters P(ϕ∣Mi). We
define the prior distributions for individual-level model parameters
(e.g., θTDRL = {α, τ, γ} for Mi = TDRL) and the hyperpriors of the
means −∞ < μ(.) < + ∞ and SDs 0 < σ(.) < +∞ of the population-
level parameter distributions (e.g., ϕTDRL = {μα, μτ, μγ, σα, στ, σγ}) to
be standard normal distributions. We estimated all parameters in
unconstrained space (i.e., −∞ < μγ < +∞) and used the inverse
Probit transform to map bounded parameters from unconstrained
space to the unit interval [0,1] before scaling parameter estimates by
the parameter’s upper bound

μγ ≏ Normalð0; 1Þ ð13Þ

σγ ≏ Normalþð0; 1Þ ð14Þ

τ0 ≏ Normalð0; 1Þ ð15Þ

τ ¼ Probit� 1ðμγ þ σγ
�τ0Þ � 20 ð16Þ

where bold terms indicate a vector of parameter values over partic-
ipants. This noncentered parameterization (62) and inverse Probit
transformation creates a uniform prior distribution over individual-
level model parameters between specified lower and upper bounds.
Note that, for learning rate and temporal discount parameters, the
scaling factor (upper bound) was set to 1, whereas it was set to 20 for
the choice temperature parameter. We used the Hamiltonian Monte
Carlo sampling algorithm in the probabilistic programming lan-
guage Stan (63) via the R package rstan (v. 2.21.2) to sample the
joint posterior distribution over group- and individual-level
model parameters for both cohorts individually and for all

participants combined into a single cohort. For all models and
each cohort, we executed 12,000 total iterations (2000 warm-up)
on each of three chains for a total of 30,000 posterior samples per
model parameter. We inspected chains for convergence by verifying
sufficient chain mixing according to the Gelman-Rubin statistic R̂,
which was less than 1.1 for all parameters.
Reinforcement learning model comparison
We compared the fit of each model to participant choice behavior
on the PRP task according to their model evidence (i.e., Bayesian
marginal likelihood), which represents the probability or “plausibil-
ity” of observing the actual PRP task data under each model (64). In
Bayesian model comparison, the model with the greatest posterior
model probability p(Mi ∣ y) is deemed the best explanation for the
data y and is computed by

PðMi j yÞ/ Pðy j MiÞPðMiÞ ð17Þ

where P(y∣Mi) is the model marginal likelihood (i.e., “model evi-
dence”), the normalizing constant of Eq. 12, and P(Mi) is the
model’s prior probability. The model evidence is defined as

Pðy j MiÞ ¼

ð

Pðy j w;MiÞPðw j MiÞdw ð18Þ

where P(w∣Mi) is the prior probability of a modelMi’s parametersw
before observing any data and P(y∣w, Mi) is the likelihood of data y
given a model and its parameters.

The marginal likelihood for each model as defined in Eq. 18 is an
optimal measure for performing model comparison as it represents
the balance between the fit of each model to the cohort’s data (as
captured by the first term in the integral) and the complexity of
each model (as captured in the second term of the integral), inte-
grated over all sampled model parameter values. In effect, although
more complex or flexible models (i.e., more parameters) are able to
predict a greater variety of behaviors and therefore increase the data
likelihood P(y∣w, Mi), more complex models have a higher dimen-
sional parameter space and therefore must necessarily assign lower
prior probability to the parameter values P(w∣Mi). In this way, the
marginal likelihood of a model automatically penalizes model com-
plexity, sometimes referred to as the “Bayesian Occam razor” (64).

To compare the TDRL and VPRL models (i.e., M1 and M2, re-
spectively), the relative posterior model probability can be defined
as

PðM1 j yÞ
PðM2 j yÞ

¼
PðM1Þ � Pðy j M1Þ

PðM2Þ � Pðy j M2Þ
ð19Þ

where the ratio of posterior model probabilities PðM1 j yÞ=PðM2 j

yÞ is referred to as the “posterior odds” of TDRL relative to VPRL;
P(M1) and P(M2) are the prior probabilities of the TDRL and VPRL
models, respectively; and the ratio of marginal likelihoods Pðy j
M1Þ=Pðy j M2Þ is termed the “Bayes factor,” which is a standard
measure for Bayesian model comparison. By assigning equal prior
probabilities over the set of candidate models, each model’s evi-
dence P(y∣Mi) can be used to rank each model in the set for com-
parison. The marginal likelihoods are computed as log-scaled, and,
therefore, the Bayes factor is computed as the difference between log
marginal likelihoods for two models; a positive value for the Bayes
factor indicates greater support for M1 (the model in the numerator
of Eq. 19), whereas a negative value for the Bayes factor indicates
greater support for M2. We estimated the log model evidence
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(marginal likelihood) for all models for each cohort and for all par-
ticipants combined into a single cohort using an adaptive impor-
tance sampling routing called bridge sampling as implemented in
the R package bridgesampling [v. 1.1-2; (65)]. Bridge sampling is
an efficient and accurate approach to calculating normalizing con-
stants like the marginal likelihood of models even with hierarchical
structure and for reinforcement learning models in particular (65).
To further ensure stability in the bridge sampler ’s estimates of
model evidence, we performed 10 repetitions of the sampler and
report the median and interquartile range of the estimates of
model evidence. The model with the maximum (i.e., least negative)
model evidence is the preferred model.

In addition to the standard Bayesian model comparison using
model marginal likelihoods, we estimated each model’s Bayesian
leave-one-out (LOO) cross-validation predictive accuracy, defined
as a model’s expected log predictive density [ELPD-LOO; (66)]

elpdLOO ¼
XN

i¼1
logðpðyi j y� iÞÞ ð20Þ

where the posterior predictive distribution p(yi|y−i) for held-out
data yi, given a set of training data y−i, is

Pðyi j y� iÞ ¼
ð

pðyi j wÞpðw j y� iÞdw ð21Þ

The ELPD is an estimate of (i.e., approximation to) the cross-val-
idated accuracy of a given model in predicting unobserved (i.e.,
held-out) participant data, given the posterior distribution over
model parameters fit to a training set of participant data (66). We
approximate this integral via importance sampling of the joint pos-
terior parameter distribution given the training data p(w∣y−i) using
the R package loo [v. 2.3.1; (66)].

We repeated this model comparison analysis (table S1) for the
behavior-only cohort and a “meta-analytic” cohort combining the
patients with ET and behavioral participants (N = 53). Running the
model comparison analysis in triplicate allowed us to assess the rep-
licability of the model comparison results, and using multiple
model comparison criteria allowed us to assess the robustness and
generalizability of the model comparison results. We elected to
focus the subsequent behavioral and neurochemical analyses on
the basic TDRL and VPRL models because the computational dif-
ferences between these models most directly address the neurobio-
logical mechanism that was our main target of investigation: the
partitioned signaling of RPEs and PPEs; all subsequent behavioral
analyses and neurochemical time series analyses of the ET cohort
used the computational model fits to the ET cohort alone.
Model and parameter recovery
We performed a model recovery analysis to validate that our Baye-
sian model comparison analysis is able to accurately identify the
true generative model of choice behavior on the PRP task. For
this model recovery analysis, we simulated choice behavior on the
PRP task for both the ET (N = 11) and behavioral (N = 42) cohorts
using the mean individual-level parameter values for TDRL and
VPRL models and then computed model comparison criteria for
the TDRL and VPRL models to determine whether the model com-
parison analysis identified the true generative model as the best
model (table S2).

To validate that our hierarchical computational model fitting
procedure is able to accurately estimate model parameters for

each participant and for TDRL and VPRL models, we performed
a parameter recovery analysis. We determined whether the empir-
ical parameter distributions for both cohorts were credibly different
by computing the difference between the ET and behavioral
cohorts’ group-level TDRL and VPRL parameter distributions,
which revealed no credible differences in any TDRL or VPRL
model parameter between the cohorts (fig. S9). Given this result
and because the larger sample size in the behavioral cohort increases
the robustness of the parameter recovery analysis results, we elected
to perform the parameter recovery analysis using the behavioral
cohort’s data. We first calculated the mean TDRL and VPRL param-
eter values for each participant in the behavioral cohort to simulate
choice datasets (N = 42) on the PRP task (using different option
presentation sequences), refitted the TDRL and VPRL models to
the simulated PRP dataset, and then computed the Pearson’s corre-
lation coefficient between the mean model parameters fitted to the
actual participant PRP data and the simulated PRP data.

Electrochemistry data analysis
General description of human voltammetry approach
The human FSCV protocol used in the current study has been ex-
tensively described in previous publications (40–43), and, therefore,
we give a brief general description here. The human voltammetry
protocol, which involves the construction of custom carbon-fiber
microelectrodes for use in the human brain (40, 42), is designed
as a human-level extension of traditional voltammetry protocols
used in model organism (e.g., rodent) and ex vivo slice or culture
preparations. The specific electrochemical properties of the
custom electrodes used in the human voltammetry protocol have
been validated in the rodent brain as matching those of rodent elec-
trodes (42). In addition, the voltagewaveform and cycling frequency
of the stimulating current, as well as the sampling rate of the current
time series during the voltage sweeps used in the human protocol,
are identical to those used in rodent studies (27).

The central difference between the human voltammetry protocol
used here (40, 41, 43) and traditional voltammetry protocols is the
statistical method used to estimate the in vivo concentration of dif-
ferent neurochemical analytes. Specifically, in traditional voltam-
metry protocols, estimating the concentration of an analyte of
interest (e.g., dopamine) involves performing principal components
regression on recorded currents (voltammograms), wherein the
principal component time series used as regressors are derived
from an in vitro dataset of voltammograms of known concentra-
tions of the analyte of interest. By contradistinction, the statistical
method used for analyte concentration estimation in the human
voltammetry protocol adopts a supervised statistical learning ap-
proach. This approach involves training an elastic net-penalized
linear regression model on in vitro voltammograms of known con-
centrations of analytes of interest (e.g., dopamine and serotonin),
varying levels of pH, and common metabolites of target analytes
[e.g., 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyin-
doleacetic acid (5-HTIAA)] or other neurotransmitters [e.g., nor-
epinephrine; (67)]. In this protocol, multiple carbon-fiber
microelectrodes identical to those used for human recordings
were used to collect the in vitro training datasets, and the penalized
linear regression model is optimized via cross-validation to reduce
the out-of-probe error. This penalized cross-validation procedure
has the added benefits of reducing bias in model performance
due to overfitting on training data and automatically selecting
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and regularizing model coefficient values (via the elastic net),
thereby providing reliable estimation performance when recovering
analyte concentrations from the electrodes used during the human
voltammetry experiments. This approach provides more reliable es-
timates of dopamine than principal components regression (40), es-
pecially under different pH levels. In addition, this approach
reliably and accurately differentiates mixtures of dopamine and se-
rotonin from a background of varying pH (41, 42) and changing
levels of dopamine or serotonin metabolites or other neurochemi-
cals like norepinephrine (67).
FSCV carbon-fiber microelectrodes and experimental
protocol
The FSCV protocol as well as the construction of carbon-fiber mi-
croelectrode probes and the specifications of the mobile electro-
chemistry recording station have been extensively described in
previous work (40, 42). Briefly, custom carbon-fiber microelec-
trodes for human FSCV experiments were placed in the caudate
nucleus as determined by DBS surgery planning for patients with
ET. We note that electrode placement within the caudate nucleus
is different for each patient in accordance with the patient-specific
trajectory of the DBS electrode used for treatment. The FSCV pro-
tocol consisted of an equilibration phase and an experiment phase
where the voltammetry measurement waveform—a triangular
waveform starting at −0.6 V, ramping up to a peak of +1.4 V at
400 V/s, and ramping back down to −0.6 V at −400 V/s—was
first cycled at 60 Hz for 10 min to allow for equilibration of the elec-
trode surface followed by a 10-Hz application of the waveform for
the duration of the experimental window encompassing the behav-
ioral task. All recordings of the measurement waveform-induced
currents (voltammograms) were collected at a 100-kHz sam-
pling rate.
In vitro training data protocol and neurochemical
concentration estimation model training
The in vitro data collected to train the dopamine concentration es-
timation model consisted of a population of five carbon-fiber mi-
croelectrodes identical to those used in the human voltammetry
experiments. Each probe contributed 16 datasets (one per solution
mixture), with each dataset consisting of 2 min worth of voltammo-
gram recordings in mixture solutions of known concentrations of
dopamine, DOPAC, and ascorbic acid (from 0 to 1500 nM in 100
nM increments), with a background of varying pH levels (from 7.2
to 7.6 in 0.1 increments). All voltammograms in the training data-
sets were sampled at 250 kHz (resulting in 2500 samples per voltam-
mogram) and then downsampled by averaging every 15 samples.
The voltammograms used to train the dopamine concentration es-
timation model were taken over the last 90 s of a probe’s 2-min re-
cording in a given solution, as these later time points are less
affected by flow or electrode equilibration artifacts that occur in
the beginning of recording periods. Each probe therefore contribut-
ed a total of 900 voltammograms per each of 16 solution mixtures
resulting in a total of 14,400 labeled samples per probe, each corre-
sponding to the probe’s response to mixed levels of dopamine,
DOPAC, ascorbic acid, and pH.

Using this in vitro training dataset, we fit a penalized linear re-
gression model using the elastic net algorithm (68) to predict known
concentrations of each analyte, optimized using 10-fold cross-vali-
dation. In this model, the target variable (y) is an N-by-4 matrix of
known levels of dopamine, DOPAC, ascorbic acid, and pH, with N
= 12,960 samples (9/10ths of the 14,400 total samples, with 1/10

held-out for cross-validation); the predictor variable matrix (x) is
an N-by-498 matrix of the corresponding raw and differentiated
voltammograms (167 time points per down-sampled voltammo-
gram, plus 166 time points for its first derivative and 165 time
points for its second derivative). The linear model coefficients (β)
are determined by minimizing the residual sum of squares, subject
to the elastic net penalty

min
ðβ0;βÞ[Rpþ1

1
2N

XN

i¼1
ðyi � β0 � xT

i βÞ
2
þ λPαðβÞ ð22Þ

where λ is a penalty term that weighs the influence of the elastic net
penalty, Pα(β)

PαðβÞ ¼ ð1 � βÞ
1
2
kβk2‘2 þ αkβk‘1 ð23Þ

where 0 < α < 1 parameterizes the relative weighting between the
ridge (‘2-norm) and lasso (‘1-norm) regularizations. The optimal
values of β, λ, and α are determined using a 10-fold cross-validation
procedure via the cvglmnet function of the glmnet package in
MATLAB. Here, we fixed α = 1 and used the smallest λ value to es-
timate dopamine concentrations from in vivo experimental
recordings.
Dopamine time series analysis
Time series of dopamine concentrations for each participant were
generated from the optimized elastic net linear regression model
with 100-ms temporal resolution. We first cut out individual
trials’ time series from 1 s (10 samples) before the trial’s option pre-
sentation screen to 100 ms (1 sample) before the next trial’s option
presentation, z-scored the dopamine concentrations within each
trial, and smoothed the within-trial dopamine time series using a
0.3 s (3 samples) sliding-window lagging average (43). From these
individual trial time series, we extracted individual event-related
dopamine responses lasting from 300 ms before event to 700 ms
(i.e., 11 time points total) following option presentation, action se-
lection, and outcome presentation. We normalized each event-
related time series by subtracting the mean dopamine level in the
300- to 0-ms window leading up to the onset of each event (i.e.,
four samples) and then dividing by the SD in dopamine levels in
the 300- to 0-ms baseline window. This normalization produces
three matrices (size trials × time) of baseline-corrected dopamine
time series, one for each event across all trials. The event-related
dopamine time series were then sorted according to whether
TDRL or VPRL models specified the time series as positive or neg-
ative RPEs or PPEs. This process was repeated for each patient in-
cluded in the voltammetry analysis (n = 3).

For group-level analyses, we either performed a fixed-effects
analysis, wherein we grouped dopamine responses across all
events, trials, and patients before conducting statistical comparisons
of prediction error responses or instead performed a mixed-effects
analysis wherewe first averaged dopamine prediction error respons-
es over all events and trials for each patient individually and then
performed statistical comparisons using the three patients’ mean
prediction error responses. Parametric statistical testing consisted
of performing either two-way ANOVA tests (prediction error
sign, time) of dopamine prediction error responses (Fig. 2) or inde-
pendent samples t tests at single time points to compare dopamine
responses to positive and negative RPEs and PPEs (Fig. 2). Non-
parametric statistical testing (fig. S4) consisted of conducting
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permutation tests (50,000 iterations) where we computed the differ-
ence between the mean dopamine response to positive and negative
RPEs and PPEs (permuted labels) at each time point, divided this
difference measure by the summed variance in dopamine levels at
that time point, and computed P values as the percentage of per-
muted mean difference measures that were greater than the absolute
value of the actual mean difference. Correction for multiple com-
parisons was performed using the Benjamini-Hochburg procedure
using a false discovery rate level α = 0.05.
Dopamine prediction error ROC decoding analysis
For the receiver operating characteristic (ROC) analysis (Fig. 3), we
trained logistic regression models on segments of event-related dop-
amine fluctuations to classify positive and negative RPEs and PPEs.
We trained separate classifiers using either TDRL or VPRL compu-
tational model-defined fluctuations; that is, the event-related dop-
amine signals used to train each classifier differed according to
whether TDRL and VPRL models specified an event as being
either a positive or negative RPE or PPE. For the RPE classifiers,
we trained the logistic models for TDRL and VPRL using samples
from 0 to 300 ms of the dopamine fluctuations; for the PPE classi-
fiers, we used samples from 400 to 700 ms of the dopamine fluctu-
ations. These RPE- and PPE-specific temporal windows were
chosen on the basis of our findings from the dopamine time
series analysis (Fig. 2). From the fitted classifiers, we computed
the area under the ROC curve (auROC) separately for the TDRL-
and VPRL-based classifiers using the perfcurve function in
MATLAB. We compared the relative performance of the TDRL
and VPRL classifiers for decoding positive and negative RPEs and
PPEs using a permutation test where we computed the difference in
auROC values across 10,000 iterations and compared the true
auROC values to the permutation test null distribution to obtain
P values. P values were computed as the number of permutation
test samples that were greater than the true difference in TDRL
and VPRL classifier auROC values.

Note that, for the prediction error classifier analyses, only 68% of
positive TD-RPEs (429 events) were classified as positive VP-RPEs
(i.e., only 68% agreement between the TDRL and VPRL classifiers
on positive RPE signals), with 26% being classified as negative VP-
PPEs (168 events), 4% as positive VP-PPEs (25 events), and 2% as
negative VP-RPEs (18 events). Similarly, for negative TD-RPEs,
only 45% are classified as negative VP-RPEs (234 events), whereas
38% are classified as positive VP-PPEs (204 events), 14% as negative
VP-PPEs (77 events), and 2% as positive VP-RPEs (9 events).

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
Tables S1 and S2
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